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• An algorithm is a step-by-step procedure for solving a 

problem in a finite amount of time 

• Most algorithms transform input objects into output objects 
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• The running time of an algorithm typically grows with the 

input size 

• Average case time is often difficult 

to determine mathematically 

• To define the running time, we focus 

on the worst case scenario 

– Easier to determine 

– Crucial and relevant to applications 

such as games, finance, robotics etc. 
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• Write a program implementing your algorithm 

• Run the program with inputs of varying size and 

composition 

• Use function like clock()to get an accurate measure of 

the actual running time 

• Plot the results 
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Experimental studies 
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• It is necessary to implement the algorithm, which may be 

difficult 

• Results may not be indicative of the running time on other 

inputs not included in the experiments 

• In order to compare two algorithms, the same hardware 

and software environments must be used 
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Limitations of experiments 
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• Uses a high-level description of the algorithm instead of an 

implementation 

• Characterizes running time as a function 

of the input size, denoted n 

• Takes into account all possible inputs 

• Allows us to evaluate the cost of an 

algorithm independently from the 

hardware/software environment 
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Theoretical analysis 
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• High-level description of an algorithm 

• More structured than English prose 

• Less detailed than a program 

• Preferred notation for describing algorithms 

• Hides program design / implementation / syntax issues 
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Pseudo-code 
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• How to compute the max value in an array of integers 
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Pseudo-code example 

Algorithm arrayMax (A, n) 

 Input array A of n integers 

 Output maximum element of A 

 currentMax  A [0] 

 for i  1 to n  1 do 

  if A[i]  currentMax  then 

   currentMax  A[i] 

 return currentMax  



Elementary maths for GMT – Algorithm analysis 

• Control flow 

– if ... then ... [ else ... ] 

– while ... do ... 

– repeat ... until ... 

– for ... do ... 

– Indentation replaces braces 

• Method declaration 

– Algorithm method ( arg [, arg ...] ) 

    Input ... 

    Output ... 
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Pseudo-code details 

• Method call 

– var.method (arg [, arg...]) 

• Return value 

– return expression 

• Expressions 

–  assignment (like = in 

Java/C#/C++) 

– = Equality testing (like == in 

Java/C#/C++) 

– Superscripts (e.g. n2) and 

other mathematical 

formatting allowed 
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• A CPU that “executes” the pseudo-code 

• A potential unbounded bank of memory cells, each of which 

can hold an arbitrary number or character 

– Memory cells are numbered and accessing any cell in memory 

takes unit time 
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• Eight functions often appear in algorithm analysis 

– Constant  ≈ 1 

– Logarithmic  ≈ log n 

– Linear ≈ n 

– N-Log-N ≈ n log n 

– Quadratic ≈ n2 

– Cubic ≈ n3 

– Exponential ≈ 2n 

– Factorial ≈ n! 
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Important functions 
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Important functions 
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Important functions 
Constant 



Elementary maths for GMT – Algorithm analysis 

• Summations 

• Logarithms and exponentials 

– Properties of logarithms 
𝑏 log 𝑥𝑦 = 𝑏 log 𝑥 + 𝑏 log 𝑦 
𝑏 log 𝑥/𝑦 = 𝑏 log 𝑥 − 𝑏 log 𝑦 
𝑏 log 𝑥𝑎 = 𝑎 𝑏 log 𝑥  
𝑏 log 𝑎 = 𝑥 log 𝑎 / 𝑥 log 𝑏  

– Properties of exponentials 
𝑎(𝑏+𝑐) = 𝑎𝑏𝑎𝑐 

𝑎𝑏𝑐 = 𝑎𝑏 𝑐
 

𝑎𝑏 / 𝑎𝑐 = 𝑎(𝑏−𝑐) 

𝑏 = 𝑎
𝑎 log 𝑏 

𝑏𝑐 = 𝑎𝑐 𝑎 log 𝑏 

15 

Necessary math 
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• Basic computations performed by an algorithm 

• Identifiable in pseudo-code 

• Largely independent from the programming language 

• Exact definition not important (we will see why later) 

• Assumed to take a constant amount of time in the RAM 

model 

• Examples 

– Evaluating an expression 

– Assigning a value to a variable 

– Indexing into an array 

– Calling a method 

– Returning from a method 
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Primitive operations 
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• By inspecting the pseudo-code, we can determine the 

maximum number of primitive operations executed by an 

algorithm, as a function of the input size 
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Counting primitive operations 

Algorithm arrayMax(A, n) 

            # operations 
 currentMax  A[0]                2 

 for i  1 to n  1 do                2n 

  if A[i]  currentMax then               2(n  1) 

   currentMax  A[i]              2(n  1) 

 { increment counter i }                2(n  1) 

 return currentMax                1 

                     Total:  8n  3 
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• The algorithm arrayMax executes 8𝑛 − 3 primitive 

operations in the worst case 

• If we define 

– a as the time for the fastest primitive operation 

– b as the time for the slowest primitive operation 

– T(n) as the worst-case time of arrayMax 

 

• Then,  𝑎(8𝑛 − 3) ≤ 𝑇(𝑛) ≤ 𝑏(8𝑛 − 3) 

• Hence, the running time T(n) is bounded by two linear 

functions 
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Estimating running time 
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• Changing the hardware / software environment 

– affects T(n) by a constant factor, but 

– does not alter the growth rate of T(n) 

 

• The linear growth rate of the running time T(n) is an 
intrinsic property of the algorithm arrayMax 
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Growth rate of running time 
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• The growth rate is not affected by 
– constant factors 

– lower-order terms 

 

• Examples 
– 10𝑛 + 10 is a linear 

function 

• what if we replace 
+ 10 by + 102 ? 

– 10𝑛2 + 10 is a quadratic 
function 

• what if we replace 
+ 10 by + 102 ? 

• what if we replace 
+ 10 by +10n ? 
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Constant factors 
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• Given functions 𝑓(𝑛) and 𝑔(𝑛), we say that 𝑓(𝑛) is 𝑂(𝑔 𝑛 ) 

if there is a positive constant 𝑐 and an integer constant 

𝑛0 ≥ 1 such that 

                      𝑓(𝑛) ≤ 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑛0 

 

• Example: 2𝑛 + 10 is 𝑂(𝑛) 

– 2𝑛 + 10 ≤ 𝑐 𝑛 

– 𝑐 − 2  𝑛 ≥ 10 

– 𝑛 ≥ 10  / (𝑐 − 2) 

– Pick c = 3 and n0 = 10 

(or c = 12 and n0 = 1 , ...) 
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The Big-Oh 
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• Example: the function n2 is not 𝑂(𝑛) 

– 𝑛2 ≤ 𝑐 𝑛 

– 𝑛 ≤ 𝑐 

– The above inequality 

cannot be satisfied 

since c must be a 

constant 
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The Big-Oh 
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• 7𝑛 − 2 is 𝑂(𝑛) 

– We need 𝑐 > 0 and 𝑛0 ≥ 1 such that 7𝑛 − 2 ≤ 𝑐 ∙ 𝑛 for 𝑛 ≥  𝑛0 

– This is true for 𝑐 = 7 and 𝑛0 = 1 

 

• 3𝑛3 + 20𝑛2 + 5 is 𝑂(𝑛3) 

– We need 𝑐 > 0 and 𝑛0 ≥ 1 such that 3𝑛3 + 20𝑛2 + 5 ≤ 𝑐 ∙ 𝑛3 for 

𝑛 ≥  𝑛0 

– This is true for 𝑐 = 4 and 𝑛0 = 21 

 

• 3 log 𝑛 + 5 is 𝑂(log 𝑛) 

– We need 𝑐 > 0 and 𝑛0 ≥ 1 such that 3 log 𝑛 + 5 ≤ 𝑐 ∙ log 𝑛 for 

𝑛 ≥  𝑛0 

– This is true for 𝑐 = 8 and 𝑛0 = 10 
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More Big-Oh examples 
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• The Big-Oh notation gives an upper bound on the growth 

rate of a function 

• The statement “𝑓(𝑛) is 𝑂(𝑔 𝑛 )” means that the growth rate 

of 𝑓(𝑛) is no more than the growth rate of 𝑔(𝑛) 

• We can use the Big-Oh notation to rank functions 

according to their growth rate 
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Big-Oh and growth rate 

𝒇(𝒏) is 𝑶(𝒈 𝒏 ) 𝒈(𝒏) is 𝑶(𝒇 𝒏 ) 

g(𝑛) grows more YES NO 

𝑓(𝑛) grows more NO YES 

same growth YES YES 
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• If 𝑓(𝑛) is a polynomial of degree d, then 𝑓(𝑛) is 𝑂(𝑛𝑑), so: 

– Drop the lower-order terms 

– Drop the constant factors 

 

• Use the smallest possible class of functions 

– We say that “2𝑛 is 𝑂(𝑛)” instead of “2𝑛 is 𝑂(𝑛2)” 

 

• Use the simplest expression of the class 

– We say that “3𝑛 + 5 is 𝑂(𝑛)” instead of “3𝑛 + 5 is 𝑂(3𝑛)” 
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Big-Oh rules 
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• The asymptotic analysis of an algorithm determines the 

running time in Big-Oh notation 

• To perform the asymptotic analysis 

– We find the worst case number of primitive operations executed as 

a function of the input size 

– We express this function with Big-Oh notation 

• Example 

– We determine that algorithm arrayMax executes at most 8𝑛 − 3 

primitive operations 

– We say that algorithm arrayMax runs in 𝑂(𝑛) time 

• Since constant factors and lower-order terms are 

eventually dropped anyhow, we can disregard them when 

counting primitives operations 
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Asymptotic algorithm analysis 
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• We further illustrate asymptotic 

analysis with two algorithms for 

prefix averages 

• The i-th prefix average of an 

array X is the average of the 

first (i+1) elements of X: 

𝐴 𝑖 =
𝑋 0 + 𝑋 1 + ⋯ + 𝑋 𝑖

𝑖 + 1
 

• Computing the array A of prefix 

averages of another array X has 

applications to financial analysis 
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Computing prefix averages 
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• The following algorithm computes prefix averages in 

quadratic time by applying the definition 
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Prefix averages – Quadratic example 

Algorithm prefixAveragesQuad(X, n) 

 Input array X of n integers 

 Output array A of prefix averages of X         # operations (after drop) 

  A  new array of n integers                  n 

 for i  0 to n  1 do                   n 

  s  X [0]     n 

  for j  1 to i do                       1 + 2 + … + (n  1) 

   s  s + X [j]       1 + 2 + … + (n  1) 

  A [i]  s / (i + 1)                                   n 

 return  A                                 1 
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• Arithmetic progression 

– The running time of prefixAveragesQuad is 
𝑂(1 + 2 + ⋯ + 𝑛) 

 

– The sum of the first 𝑛 integers is 

𝑛 𝑛 + 1 /2 

• There is a simple visual proof of this fact 

 

– Thus, the algorithm prefixAveragesQuad 

runs in 𝑂(𝑛2) time 

• recall that lower-order terms can be disregarded (n / 2) 
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Prefix averages – Quadratic example 
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• The following algorithm computes prefix averages in a 

linear time by keeping a running sum 

 

 

 

 

 

 

 

 

• Algorithm prefixAveragesLinear runs in 𝑂 𝑛  time 
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Prefix averages – Linear example 

Algorithm prefixAveragesLinear(X, n) 

 Input array X of n integers 

 Output array A of prefix averages of X     # operations (after drop) 

 A  new array of n integers   n 

 s  0      1 

 for i  0 to n  1 do    n 

  s  s + X [i]    n 

  A [i]  s / (i + 1)     n 

 return A            1 
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• Big-Omega 

– 𝑓(𝑛) is 𝛀(𝑔 𝑛 ) if there is a constant 𝑐 > 0 and an integer constant 

𝑛0 ≥ 1 such that 

𝑓 𝑛 ≥ 𝑐 ∙ 𝑔(𝑛) for 𝑛 ≥  𝑛0 

 

• Big-Theta 

– 𝑓(𝑛) is Θ(𝑔 𝑛 ) if there are constants 𝑐′ > 0 and 𝑐′′ > 0 and an 

integer constant 𝑛0 ≥ 1 such that 

𝑐′ ∙ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐′′ ∙ 𝑔(𝑛) for 𝑛 ≥  𝑛0 
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Relatives of Big-Oh 
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• Big-Oh 

– 𝑓 𝑛  is 𝑂(𝑔 𝑛 ) if 𝑓(𝑛) is asymptotically less than or equal to 𝑔(𝑛) 

 

• Big-Omega 

– 𝑓 𝑛  is 𝛀(𝑔 𝑛 ) if 𝑓(𝑛) is asymptotically greater than or equal to 

𝑔(𝑛) 

 

• Big-Theta 

– 𝑓 𝑛  is Θ(𝑔 𝑛 ) if 𝑓(𝑛) is asymptotically equal to 𝑔(𝑛) 

 

• In Big-Omega and Big-Theta notation we also omit 

constants and lower-order terms 
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Intuition for asymptotic notation 
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• 5𝑛2 is 𝛀(𝑛2) 

– 𝑓(𝑛) is 𝛀(𝑔 𝑛 ) if there is a constant 𝑐 > 0 and an integer constant 

𝑛0 ≥ 1 such that 𝑓 𝑛 ≥ 𝑐 ∙ 𝑔(𝑛) for 𝑛 ≥  𝑛0 

– True for 𝑐 = 5 and 𝑛0 = 1 

• 5𝑛2 is 𝛀(𝑛) 

– 𝑓(𝑛) is 𝛀(𝑔 𝑛 ) if there is a constant 𝑐 > 0 and an integer constant 

𝑛0 ≥ 1 such that 𝑓 𝑛 ≥ 𝑐 ∙ 𝑔(𝑛) for 𝑛 ≥  𝑛0 

– True for 𝑐 = 1 and 𝑛0 = 1 

• 5𝑛2 is Θ(𝑛2) 

– 𝑓(𝑛) is Θ(𝑔 𝑛 ) if it is 𝛀(𝑛2) and 𝑂(𝑛2). We have already seen the 

former, for the latter recall that 𝑓(𝑛) is 𝑂(𝑔 𝑛 ) if there is a constant 

𝑐 > 0 and an integer constant 𝑛0 ≥ 1 such that 𝑓 𝑛 ≤ 𝑐 ∙ 𝑔(𝑛) for 

𝑛 ≥  𝑛0 

– True for 𝑐 = 5 and 𝑛0 = 1 
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Examples of relatives of Big-Oh 


