
Elementary maths for GMT

Algorithm analysis

Part I

Elementary maths for GMT – Algorithm analysis

• An algorithm is a step-by-step procedure for solving a

problem in a finite amount of time

• Most algorithms transform input objects into output objects

2

Algorithms

Output Algorithm Input

Elementary maths for GMT – Algorithm analysis

• The running time of an algorithm typically grows with the

input size

• Average case time is often difficult

to determine mathematically

• To define the running time, we focus

on the worst case scenario

– Easier to determine

– Crucial and relevant to applications

such as games, finance, robotics etc.

3

Running time

0

20

40

60

80

100

120

R
u

n
n

in
g

 T
im

e

1000 2000 3000 4000

Input Size

best case

average case

worst case

Elementary maths for GMT – Algorithm analysis

• Write a program implementing your algorithm

• Run the program with inputs of varying size and

composition

• Use function like clock()to get an accurate measure of

the actual running time

• Plot the results

4

Experimental studies

Elementary maths for GMT – Algorithm analysis

• It is necessary to implement the algorithm, which may be

difficult

• Results may not be indicative of the running time on other

inputs not included in the experiments

• In order to compare two algorithms, the same hardware

and software environments must be used

5

Limitations of experiments

Elementary maths for GMT – Algorithm analysis

• Uses a high-level description of the algorithm instead of an

implementation

• Characterizes running time as a function

of the input size, denoted n

• Takes into account all possible inputs

• Allows us to evaluate the cost of an

algorithm independently from the

hardware/software environment

6

Theoretical analysis

Elementary maths for GMT – Algorithm analysis

• High-level description of an algorithm

• More structured than English prose

• Less detailed than a program

• Preferred notation for describing algorithms

• Hides program design / implementation / syntax issues

7

Pseudo-code

Elementary maths for GMT – Algorithm analysis

• How to compute the max value in an array of integers

8

Pseudo-code example

Algorithm arrayMax (A, n)

 Input array A of n integers

 Output maximum element of A

 currentMax  A [0]

 for i  1 to n  1 do

 if A[i]  currentMax then

 currentMax  A[i]

 return currentMax

Elementary maths for GMT – Algorithm analysis

• Control flow

– if ... then ... [else ...]

– while ... do ...

– repeat ... until ...

– for ... do ...

– Indentation replaces braces

• Method declaration

– Algorithm method (arg [, arg ...])

 Input ...

 Output ...

9

Pseudo-code details

• Method call

– var.method (arg [, arg...])

• Return value

– return expression

• Expressions

–  assignment (like = in

Java/C#/C++)

– = Equality testing (like == in

Java/C#/C++)

– Superscripts (e.g. n2) and

other mathematical

formatting allowed

Elementary maths for GMT – Algorithm analysis

• A CPU that “executes” the pseudo-code

• A potential unbounded bank of memory cells, each of which

can hold an arbitrary number or character

– Memory cells are numbered and accessing any cell in memory

takes unit time

10

Random Access Machine (RAM)

0
1

2
•

•
•

Elementary maths for GMT – Algorithm analysis

• Eight functions often appear in algorithm analysis

– Constant ≈ 1

– Logarithmic ≈ log n

– Linear ≈ n

– N-Log-N ≈ n log n

– Quadratic ≈ n2

– Cubic ≈ n3

– Exponential ≈ 2n

– Factorial ≈ n!

11

Important functions

Elementary maths for GMT – Algorithm analysis

• Eight functions often appear in algorithm analysis

– Constant ≈ 1

– Logarithmic ≈ log n

– Linear ≈ n

– N-Log-N ≈ n log n

– Quadratic ≈ n2

– Cubic ≈ n3

– Exponential ≈ 2n

– Factorial ≈ n!

12

Important functions

Elementary maths for GMT – Algorithm analysis

• Eight functions often appear in algorithm analysis

– Constant ≈ 1

– Logarithmic ≈ log n

– Linear ≈ n

– N-Log-N ≈ n log n

– Quadratic ≈ n2

– Cubic ≈ n3

– Exponential ≈ 2n

– Factorial ≈ n!

13

Important functions

Elementary maths for GMT – Algorithm analysis 14

Important functions
Constant

Elementary maths for GMT – Algorithm analysis

• Summations

• Logarithms and exponentials

– Properties of logarithms
𝑏 log 𝑥𝑦 = 𝑏 log 𝑥 + 𝑏 log 𝑦
𝑏 log 𝑥/𝑦 = 𝑏 log 𝑥 − 𝑏 log 𝑦
𝑏 log 𝑥𝑎 = 𝑎 𝑏 log 𝑥
𝑏 log 𝑎 = 𝑥 log 𝑎 / 𝑥 log 𝑏

– Properties of exponentials
𝑎(𝑏+𝑐) = 𝑎𝑏𝑎𝑐

𝑎𝑏𝑐 = 𝑎𝑏 𝑐

𝑎𝑏 / 𝑎𝑐 = 𝑎(𝑏−𝑐)

𝑏 = 𝑎
𝑎 log 𝑏

𝑏𝑐 = 𝑎𝑐 𝑎 log 𝑏

15

Necessary math

Elementary maths for GMT – Algorithm analysis

• Basic computations performed by an algorithm

• Identifiable in pseudo-code

• Largely independent from the programming language

• Exact definition not important (we will see why later)

• Assumed to take a constant amount of time in the RAM

model

• Examples

– Evaluating an expression

– Assigning a value to a variable

– Indexing into an array

– Calling a method

– Returning from a method

16

Primitive operations

Elementary maths for GMT – Algorithm analysis

• By inspecting the pseudo-code, we can determine the

maximum number of primitive operations executed by an

algorithm, as a function of the input size

17

Counting primitive operations

Algorithm arrayMax(A, n)

 # operations
 currentMax  A[0] 2

 for i  1 to n  1 do 2n

 if A[i]  currentMax then 2(n  1)

 currentMax  A[i] 2(n  1)

 { increment counter i } 2(n  1)

 return currentMax 1

 Total: 8n  3

Elementary maths for GMT – Algorithm analysis

• The algorithm arrayMax executes 8𝑛 − 3 primitive

operations in the worst case

• If we define

– a as the time for the fastest primitive operation

– b as the time for the slowest primitive operation

– T(n) as the worst-case time of arrayMax

• Then, 𝑎(8𝑛 − 3) ≤ 𝑇(𝑛) ≤ 𝑏(8𝑛 − 3)

• Hence, the running time T(n) is bounded by two linear

functions

18

Estimating running time

Elementary maths for GMT – Algorithm analysis

• Changing the hardware / software environment

– affects T(n) by a constant factor, but

– does not alter the growth rate of T(n)

• The linear growth rate of the running time T(n) is an
intrinsic property of the algorithm arrayMax

19

Growth rate of running time

Elementary maths for GMT – Algorithm analysis

• The growth rate is not affected by
– constant factors

– lower-order terms

• Examples
– 10𝑛 + 10 is a linear

function

• what if we replace
+ 10 by + 102 ?

– 10𝑛2 + 10 is a quadratic
function

• what if we replace
+ 10 by + 102 ?

• what if we replace
+ 10 by +10n ?

20

Constant factors

Elementary maths for GMT – Algorithm analysis

• Given functions 𝑓(𝑛) and 𝑔(𝑛), we say that 𝑓(𝑛) is 𝑂(𝑔 𝑛)

if there is a positive constant 𝑐 and an integer constant

𝑛0 ≥ 1 such that

 𝑓(𝑛) ≤ 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑛0

• Example: 2𝑛 + 10 is 𝑂(𝑛)

– 2𝑛 + 10 ≤ 𝑐 𝑛

– 𝑐 − 2 𝑛 ≥ 10

– 𝑛 ≥ 10 / (𝑐 − 2)

– Pick c = 3 and n0 = 10

(or c = 12 and n0 = 1 , ...)

21

The Big-Oh

Elementary maths for GMT – Algorithm analysis

• Example: the function n2 is not 𝑂(𝑛)

– 𝑛2 ≤ 𝑐 𝑛

– 𝑛 ≤ 𝑐

– The above inequality

cannot be satisfied

since c must be a

constant

22

The Big-Oh

Elementary maths for GMT – Algorithm analysis

• 7𝑛 − 2 is 𝑂(𝑛)

– We need 𝑐 > 0 and 𝑛0 ≥ 1 such that 7𝑛 − 2 ≤ 𝑐 ∙ 𝑛 for 𝑛 ≥ 𝑛0

– This is true for 𝑐 = 7 and 𝑛0 = 1

• 3𝑛3 + 20𝑛2 + 5 is 𝑂(𝑛3)

– We need 𝑐 > 0 and 𝑛0 ≥ 1 such that 3𝑛3 + 20𝑛2 + 5 ≤ 𝑐 ∙ 𝑛3 for

𝑛 ≥ 𝑛0

– This is true for 𝑐 = 4 and 𝑛0 = 21

• 3 log 𝑛 + 5 is 𝑂(log 𝑛)

– We need 𝑐 > 0 and 𝑛0 ≥ 1 such that 3 log 𝑛 + 5 ≤ 𝑐 ∙ log 𝑛 for

𝑛 ≥ 𝑛0

– This is true for 𝑐 = 8 and 𝑛0 = 10

23

More Big-Oh examples

Elementary maths for GMT – Algorithm analysis

• The Big-Oh notation gives an upper bound on the growth

rate of a function

• The statement “𝑓(𝑛) is 𝑂(𝑔 𝑛)” means that the growth rate

of 𝑓(𝑛) is no more than the growth rate of 𝑔(𝑛)

• We can use the Big-Oh notation to rank functions

according to their growth rate

24

Big-Oh and growth rate

𝒇(𝒏) is 𝑶(𝒈 𝒏) 𝒈(𝒏) is 𝑶(𝒇 𝒏)

g(𝑛) grows more YES NO

𝑓(𝑛) grows more NO YES

same growth YES YES

Elementary maths for GMT – Algorithm analysis

• If 𝑓(𝑛) is a polynomial of degree d, then 𝑓(𝑛) is 𝑂(𝑛𝑑), so:

– Drop the lower-order terms

– Drop the constant factors

• Use the smallest possible class of functions

– We say that “2𝑛 is 𝑂(𝑛)” instead of “2𝑛 is 𝑂(𝑛2)”

• Use the simplest expression of the class

– We say that “3𝑛 + 5 is 𝑂(𝑛)” instead of “3𝑛 + 5 is 𝑂(3𝑛)”

25

Big-Oh rules

Elementary maths for GMT – Algorithm analysis

• The asymptotic analysis of an algorithm determines the

running time in Big-Oh notation

• To perform the asymptotic analysis

– We find the worst case number of primitive operations executed as

a function of the input size

– We express this function with Big-Oh notation

• Example

– We determine that algorithm arrayMax executes at most 8𝑛 − 3

primitive operations

– We say that algorithm arrayMax runs in 𝑂(𝑛) time

• Since constant factors and lower-order terms are

eventually dropped anyhow, we can disregard them when

counting primitives operations

26

Asymptotic algorithm analysis

Elementary maths for GMT – Algorithm analysis

• We further illustrate asymptotic

analysis with two algorithms for

prefix averages

• The i-th prefix average of an

array X is the average of the

first (i+1) elements of X:

𝐴 𝑖 =
𝑋 0 + 𝑋 1 + ⋯ + 𝑋 𝑖

𝑖 + 1

• Computing the array A of prefix

averages of another array X has

applications to financial analysis

27

Computing prefix averages

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X

A

Elementary maths for GMT – Algorithm analysis

• The following algorithm computes prefix averages in

quadratic time by applying the definition

28

Prefix averages – Quadratic example

Algorithm prefixAveragesQuad(X, n)

 Input array X of n integers

 Output array A of prefix averages of X # operations (after drop)

 A  new array of n integers n

 for i  0 to n  1 do n

 s  X [0] n

 for j  1 to i do 1 + 2 + … + (n  1)

 s  s + X [j] 1 + 2 + … + (n  1)

 A [i]  s / (i + 1) n

 return A 1

Elementary maths for GMT – Algorithm analysis

• Arithmetic progression

– The running time of prefixAveragesQuad is
𝑂(1 + 2 + ⋯ + 𝑛)

– The sum of the first 𝑛 integers is

𝑛 𝑛 + 1 /2

• There is a simple visual proof of this fact

– Thus, the algorithm prefixAveragesQuad

runs in 𝑂(𝑛2) time

• recall that lower-order terms can be disregarded (n / 2)

29

Prefix averages – Quadratic example

0

1

2

3

4

5

6

7

1 2 3 4 5 6

Elementary maths for GMT – Algorithm analysis

• The following algorithm computes prefix averages in a

linear time by keeping a running sum

• Algorithm prefixAveragesLinear runs in 𝑂 𝑛 time

30

Prefix averages – Linear example

Algorithm prefixAveragesLinear(X, n)

 Input array X of n integers

 Output array A of prefix averages of X # operations (after drop)

 A  new array of n integers n

 s  0 1

 for i  0 to n  1 do n

 s  s + X [i] n

 A [i]  s / (i + 1) n

 return A 1

Elementary maths for GMT – Algorithm analysis

• Big-Omega

– 𝑓(𝑛) is 𝛀(𝑔 𝑛) if there is a constant 𝑐 > 0 and an integer constant

𝑛0 ≥ 1 such that

𝑓 𝑛 ≥ 𝑐 ∙ 𝑔(𝑛) for 𝑛 ≥ 𝑛0

• Big-Theta

– 𝑓(𝑛) is Θ(𝑔 𝑛) if there are constants 𝑐′ > 0 and 𝑐′′ > 0 and an

integer constant 𝑛0 ≥ 1 such that

𝑐′ ∙ 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐′′ ∙ 𝑔(𝑛) for 𝑛 ≥ 𝑛0

31

Relatives of Big-Oh

Elementary maths for GMT – Algorithm analysis

• Big-Oh

– 𝑓 𝑛 is 𝑂(𝑔 𝑛) if 𝑓(𝑛) is asymptotically less than or equal to 𝑔(𝑛)

• Big-Omega

– 𝑓 𝑛 is 𝛀(𝑔 𝑛) if 𝑓(𝑛) is asymptotically greater than or equal to

𝑔(𝑛)

• Big-Theta

– 𝑓 𝑛 is Θ(𝑔 𝑛) if 𝑓(𝑛) is asymptotically equal to 𝑔(𝑛)

• In Big-Omega and Big-Theta notation we also omit

constants and lower-order terms

32

Intuition for asymptotic notation

Elementary maths for GMT – Algorithm analysis

• 5𝑛2 is 𝛀(𝑛2)

– 𝑓(𝑛) is 𝛀(𝑔 𝑛) if there is a constant 𝑐 > 0 and an integer constant

𝑛0 ≥ 1 such that 𝑓 𝑛 ≥ 𝑐 ∙ 𝑔(𝑛) for 𝑛 ≥ 𝑛0

– True for 𝑐 = 5 and 𝑛0 = 1

• 5𝑛2 is 𝛀(𝑛)

– 𝑓(𝑛) is 𝛀(𝑔 𝑛) if there is a constant 𝑐 > 0 and an integer constant

𝑛0 ≥ 1 such that 𝑓 𝑛 ≥ 𝑐 ∙ 𝑔(𝑛) for 𝑛 ≥ 𝑛0

– True for 𝑐 = 1 and 𝑛0 = 1

• 5𝑛2 is Θ(𝑛2)

– 𝑓(𝑛) is Θ(𝑔 𝑛) if it is 𝛀(𝑛2) and 𝑂(𝑛2). We have already seen the

former, for the latter recall that 𝑓(𝑛) is 𝑂(𝑔 𝑛) if there is a constant

𝑐 > 0 and an integer constant 𝑛0 ≥ 1 such that 𝑓 𝑛 ≤ 𝑐 ∙ 𝑔(𝑛) for

𝑛 ≥ 𝑛0

– True for 𝑐 = 5 and 𝑛0 = 1

33

Examples of relatives of Big-Oh

